Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Lab Chip ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623600

RESUMO

Gas embolism is a medical condition that occurs when gas bubbles are present in veins or arteries, decreasing blood flow and potentially reducing oxygen delivery to vital organs, such as the brain. Although usually reported as rare, gas embolism can lead to severe neurological damage or death. However, presently, only limited understanding exists regarding the microscale processes leading to the formation, persistence, movement, and resolution of gas emboli, as modulated by microvasculature geometrical features and blood properties. Because gas embolism is initially a physico-chemical-only process, with biological responses starting later, the opportunity exists to fully study the genesis and evolution of gas emboli using in vitro microfluidic networks mimicking small regions of microvasculature. The microfluidics networks used in this study, which aim to mimic microvasculature geometry, comprise linear channels with T-, or Y-junction air inlets, with 20, 40, and 60 µm widths (arterial or venous), and a 30 µm width honeycombed network (arterial) with three bifurcation angles (30°, 60°, and 90°). Synthetic blood, equivalent to 46% haematocrit concentrations, and water were used to study the modulation of gas embolism-like events by liquid viscosity. Our study shows that (i) longer bubbles with lower velocity occur in narrower channels, e.g., with 20 µm width; (ii) the resistance of air bubbles to the flow increases with the higher haematocrit concentration; and lastly (iii) the propensity of gas embolism-like events in honeycomb architectures increases for more acute, e.g., 30°, bifurcation angles. A dimensionless analysis using Euler, Weber, and capillary numbers demarcated the conditions conducive to gas embolism. This work suggests that in vitro experimentation using microfluidic devices with microvascular tissue-like structures could assist medical guidelines and management in preventing and mitigating the effects of gas embolism.

2.
Biosens Bioelectron ; 246: 115879, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056344

RESUMO

Motor proteins, such as myosin and kinesin, are biological molecular motors involved in force generation and intracellular transport within living cells. The characteristics of molecular motors, i.e., their motility over long distances, their capacity of transporting cargoes, and their very efficient energy consumption, recommend them as potential operational elements of a new class of dynamic nano-devices, with potential applications in biosensing, analyte concentrators, and biocomputation. A possible design of a biosensor based on protein molecular motor comprises a surface with immobilized motors propelling cytoskeletal filaments, which are decorated with antibodies, presented as side-branches. Upon biomolecular recognition of these branches by secondary antibodies, the 'extensions' on the cytoskeletal filaments can achieve considerable lengths (longer than several diameters of the cytoskeletal filament carrier), thus geometrically impairing or halting motility. Because the filaments are several micrometers long, this sensing mechanism converts an event in the nanometer range, i.e., antibody-antigen sizes, into an event in the micrometer range: the visualization of the halting of motility of microns-long cytoskeletal filaments. Here we demonstrate the proof of concept of a sensing system comprising heavy-mero-myosin immobilized on surfaces propelling actin filaments decorated with actin antibodies, whose movement is halted upon the recognition with secondary anti-actin antibodies. Because antibodies to the actin-myosin system are involved in several rare diseases, the first possible application for such a device may be their prognosis and diagnosis. The results also provide insights into guidelines for designing highly sensitive and very fast biosensors powered by motor proteins.


Assuntos
Actinas , Técnicas Biossensoriais , Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Citoesqueleto/metabolismo , Anticorpos/metabolismo , Cinesinas/metabolismo
3.
ACS Sens ; 8(5): 1882-1890, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099014

RESUMO

A challenge of any biosensing technology is the detection of very low concentrations of analytes. The fluorescence interference contrast (FLIC) technique improves the fluorescence-based sensitivity by selectively amplifying, or suppressing, the emission of a fluorophore-labeled biomolecule immobilized on a transparent layer placed on top of a mirror basal surface. The standing wave of the reflected emission light means that the height of the transparent layer operates as a surface-embedded optical filter for the fluorescence signal. FLIC extreme sensitivity to wavelength is also its main problem: small, e.g., 10 nm range, variations of the vertical position of the fluorophore can translate in unwanted suppression of the detection signal. Herein, we introduce the concept of quasi-circular lenticular microstructured domes operating as continuous-mode optical filters, generating fluorescent concentric rings, with diameters determined by the wavelengths of the fluorescence light, in turn modulated by FLIC. The critical component of the lenticular structures was the shallow sloping side wall, which allowed the simultaneous separation of fluorescent patterns for virtually any fluorophore wavelength. Purposefully designed microstructures with either stepwise or continuous-slope dome geometries were fabricated to modulate the intensity and the lateral position of a fluorescence signal. The simulation of FLIC effects induced by the lenticular microstructures was confirmed by the measurement of the fluorescence profile for three fluorescent dyes, as well as high-resolution fluorescence scanning using stimulated emission depletion (STED) microscopy. The high sensitivity of the spatially addressable FLIC technology was further validated on a diagnostically important target, i.e., the receptor-binding domain (RBD) of the SARS-Cov2 via the detection of RBD:anti-S1-antibody.


Assuntos
COVID-19 , RNA Viral , Humanos , Microscopia de Fluorescência/métodos , SARS-CoV-2 , Corantes Fluorescentes/química
5.
NPJ Breast Cancer ; 8(1): 57, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501337

RESUMO

Intratumoral heterogeneity is caused by genomic instability and phenotypic plasticity, but how these features co-evolve remains unclear. SOX10 is a neural crest stem cell (NCSC) specifier and candidate mediator of phenotypic plasticity in cancer. We investigated its relevance in breast cancer by immunophenotyping 21 normal breast and 1860 tumour samples. Nuclear SOX10 was detected in normal mammary luminal progenitor cells, the histogenic origin of most TNBCs. In tumours, nuclear SOX10 was almost exclusive to TNBC, and predicted poorer outcome amongst cross-sectional (p = 0.0015, hazard ratio 2.02, n = 224) and metaplastic (p = 0.04, n = 66) cases. To understand SOX10's influence over the transcriptome during the transition from normal to malignant states, we performed a systems-level analysis of co-expression data, de-noising the networks with an eigen-decomposition method. This identified a core module in SOX10's normal mammary epithelial network that becomes rewired to NCSC genes in TNBC. Crucially, this reprogramming was proportional to genome-wide promoter methylation loss, particularly at lineage-specifying CpG-island shores. We propose that the progressive, genome-wide methylation loss in TNBC simulates more primitive epigenome architecture, making cells vulnerable to SOX10-driven reprogramming. This study demonstrates potential utility for SOX10 as a prognostic biomarker in TNBC and provides new insights about developmental phenotypic mimicry-a major contributor to intratumoral heterogeneity.

6.
Lancet Respir Med ; 10(6): 545-556, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35397798

RESUMO

BACKGROUND: Community-based clinical trials of the inhaled corticosteroid budesonide in early COVID-19 have shown improved patient outcomes. We aimed to understand the inflammatory mechanism of budesonide in the treatment of early COVID-19. METHODS: The STOIC trial was a randomised, open label, parallel group, phase 2 clinical intervention trial where patients were randomly assigned (1:1) to receive usual care (as needed antipyretics were only available treatment) or inhaled budesonide at a dose of 800 µg twice a day plus usual care. For this experimental analysis, we investigated the nasal mucosal inflammatory response in patients recruited to the STOIC trial and in a cohort of SARS-CoV-2-negative healthy controls, recruited from a long-term observational data collection study at the University of Oxford. In patients with SARS-CoV-2 who entered the STOIC study, nasal epithelial lining fluid was sampled at day of randomisation (day 0) and at day 14 following randomisation, blood samples were also collected at day 28 after randomisation. Nasal epithelial lining fluid and blood samples were collected from the SARS-CoV-2 negative control cohort. Inflammatory mediators in the nasal epithelial lining fluid and blood were assessed for a range of viral response proteins, and innate and adaptive response markers using Meso Scale Discovery enzyme linked immunoassay panels. These samples were used to investigate the evolution of inflammation in the early COVID-19 disease course and assess the effect of budesonide on inflammation. FINDINGS: 146 participants were recruited in the STOIC trial (n=73 in the usual care group; n=73 in the budesonide group). 140 nasal mucosal samples were available at day 0 (randomisation) and 122 samples at day 14. At day 28, whole blood was collected from 123 participants (62 in the budesonide group and 61 in the usual care group). 20 blood or nasal samples were collected from healthy controls. In early COVID-19 disease, there was an enhanced inflammatory airway response with the induction of an anti-viral and T-helper 1 and 2 (Th1/2) inflammatory response compared with healthy individuals. Individuals with COVID-19 who clinically deteriorated (ie, who met the primary outcome) showed an early blunted respiratory interferon response and pronounced and persistent Th2 inflammation, mediated by CC chemokine ligand (CCL)-24, compared with those with COVID-19 who did not clinically deteriorate. Over time, the natural course of COVID-19 showed persistently high respiratory interferon concentrations and elevated concentrations of the eosinophil chemokine, CCL-11, despite clinical symptom improvement. There was persistent systemic inflammation after 28 days following COVID-19, including elevated concentrations of interleukin (IL)-6, tumour necrosis factor-α, and CCL-11. Budesonide treatment modulated inflammation in the nose and blood and was shown to decrease IL-33 and increase CCL17. The STOIC trial was registered with ClinicalTrials.gov, NCT04416399. INTERPRETATION: An initial blunted interferon response and heightened T-helper 2 inflammatory response in the respiratory tract following SARS-CoV-2 infection could be a biomarker for predicting the development of severe COVID-19 disease. The clinical benefit of inhaled budesonide in early COVID-19 is likely to be as a consequence of its inflammatory modulatory effect, suggesting efficacy by reducing epithelial damage and an improved T-cell response. FUNDING: Oxford National Institute of Health Research Biomedical Research Centre and AstraZeneca.


Assuntos
Tratamento Farmacológico da COVID-19 , Corticosteroides/uso terapêutico , Antivirais/uso terapêutico , Budesonida/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Interferons , Mucosa Respiratória , SARS-CoV-2 , Resultado do Tratamento
7.
Materials (Basel) ; 15(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35329765

RESUMO

Polydimethylsiloxane (PDMS), a silicone elastomer, is increasingly being used in health and biomedical fields due to its excellent optical and mechanical properties. Its biocompatibility and resistance to biodegradation led to various applications (e.g., lung on a chip replicating blood flow, medical interventions, and diagnostics). The many advantages of PDMS are, however, partially offset by its inherent hydrophobicity, which makes it unsuitable for applications needing wetting, thus requiring the hydrophilization of its surface by exposure to UV or O2 plasma. Yet, the elastomeric state of PDMS translates in a slow, hours to days, process of reducing its surface hydrophilicity-a process denominated as hydrophobic recovery. Using Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM), the present study details the dynamics of hydrophobic recovery of PDMS, on flat bare surfaces and on surfaces embedded with hydrophilic beads. It was found that a thin, stiff, hydrophilic, silica film formed on top of the PDMS material, following its hydrophilization by UV radiation. The hydrophobic recovery of bare PDMS material is the result of an overlap of various nano-mechanical, and diffusional processes, each with its own dynamics rate, which were analyzed in parallel. The hydrophobic recovery presents a hysteresis, with surface hydrophobicity recovering only partially due to a thin, but resilient top silica layer. The monitoring of hydrophobic recovery of PDMS embedded with hydrophilic beads revealed that this is delayed, and then totally stalled in the few-micrometer vicinity of the embedded hydrophilic beads. This region where the hydrophobic recovery stalls can be used as a good approximation of the depth of the resilient, moderately hydrophilic top layer on the PDMS material. The complex processes of hydrophilization and subsequent hydrophobic recovery impact the design, fabrication, and operation of PDMS materials and devices used for diagnostics and medical procedures. Consequently, especially considering the emergence of new surgical procedures using elastomers, the impact of hydrophobic recovery on the surface of PDMS warrants more comprehensive studies.

8.
Biosens Bioelectron ; 203: 114011, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124343

RESUMO

Motor proteins, such as myosin and kinesin, are biological molecular motors involved in force generation and intracellular transport in living cells. They were proposed to drive molecular shuttles for the active transport of analytes, thus significantly accelerating the sensing process of biosensors. Integrating motor proteins into biosensors requires their immobilisation on the operating surfaces. However, this process makes some motor proteins defective, slowing analyte detection. Here, we investigated the movements of molecular shuttles on surfaces in the presence of active and defective motors using a Brownian dynamics simulation, and elucidated the effects of defective motor proteins on the transport efficiency of the shuttles. We found that the motility of shuttles depends on the fraction of active motors relative to defective ones and that over 90% of the surface-bound motor proteins must remain active for efficient transport. The high fraction of active motors required for efficient transport can be attributed to the difference in the binding lifetimes of active and defective motors to shuttles. These results provide insights into how motors accumulate on sensor surfaces and set a guideline for the choice of polymer materials for biosensors powered by motor proteins.


Assuntos
Técnicas Biossensoriais , Transporte Biológico Ativo , Cinesinas , Microtúbulos/química , Microtúbulos/metabolismo , Miosinas
9.
Lancet ; 398(10303): 843-855, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34388395

RESUMO

BACKGROUND: A previous efficacy trial found benefit from inhaled budesonide for COVID-19 in patients not admitted to hospital, but effectiveness in high-risk individuals is unknown. We aimed to establish whether inhaled budesonide reduces time to recovery and COVID-19-related hospital admissions or deaths among people at high risk of complications in the community. METHODS: PRINCIPLE is a multicentre, open-label, multi-arm, randomised, controlled, adaptive platform trial done remotely from a central trial site and at primary care centres in the UK. Eligible participants were aged 65 years or older or 50 years or older with comorbidities, and unwell for up to 14 days with suspected COVID-19 but not admitted to hospital. Participants were randomly assigned to usual care, usual care plus inhaled budesonide (800 µg twice daily for 14 days), or usual care plus other interventions, and followed up for 28 days. Participants were aware of group assignment. The coprimary endpoints are time to first self-reported recovery and hospital admission or death related to COVID-19, within 28 days, analysed using Bayesian models. The primary analysis population included all eligible SARS-CoV-2-positive participants randomly assigned to budesonide, usual care, and other interventions, from the start of the platform trial until the budesonide group was closed. This trial is registered at the ISRCTN registry (ISRCTN86534580) and is ongoing. FINDINGS: The trial began enrolment on April 2, 2020, with randomisation to budesonide from Nov 27, 2020, until March 31, 2021, when the prespecified time to recovery superiority criterion was met. 4700 participants were randomly assigned to budesonide (n=1073), usual care alone (n=1988), or other treatments (n=1639). The primary analysis model includes 2530 SARS-CoV-2-positive participants, with 787 in the budesonide group, 1069 in the usual care group, and 974 receiving other treatments. There was a benefit in time to first self-reported recovery of an estimated 2·94 days (95% Bayesian credible interval [BCI] 1·19 to 5·12) in the budesonide group versus the usual care group (11·8 days [95% BCI 10·0 to 14·1] vs 14·7 days [12·3 to 18·0]; hazard ratio 1·21 [95% BCI 1·08 to 1·36]), with a probability of superiority greater than 0·999, meeting the prespecified superiority threshold of 0·99. For the hospital admission or death outcome, the estimated rate was 6·8% (95% BCI 4·1 to 10·2) in the budesonide group versus 8·8% (5·5 to 12·7) in the usual care group (estimated absolute difference 2·0% [95% BCI -0·2 to 4·5]; odds ratio 0·75 [95% BCI 0·55 to 1·03]), with a probability of superiority 0·963, below the prespecified superiority threshold of 0·975. Two participants in the budesonide group and four in the usual care group had serious adverse events (hospital admissions unrelated to COVID-19). INTERPRETATION: Inhaled budesonide improves time to recovery, with a chance of also reducing hospital admissions or deaths (although our results did not meet the superiority threshold), in people with COVID-19 in the community who are at higher risk of complications. FUNDING: National Institute of Health Research and United Kingdom Research Innovation.


Assuntos
Budesonida/administração & dosagem , Tratamento Farmacológico da COVID-19 , Glucocorticoides/administração & dosagem , Administração por Inalação , Idoso , Teorema de Bayes , COVID-19/mortalidade , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , SARS-CoV-2 , Resultado do Tratamento
10.
Lancet Respir Med ; 9(7): 763-772, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33844996

RESUMO

BACKGROUND: Multiple early reports of patients admitted to hospital with COVID-19 showed that patients with chronic respiratory disease were significantly under-represented in these cohorts. We hypothesised that the widespread use of inhaled glucocorticoids among these patients was responsible for this finding, and tested if inhaled glucocorticoids would be an effective treatment for early COVID-19. METHODS: We performed an open-label, parallel-group, phase 2, randomised controlled trial (Steroids in COVID-19; STOIC) of inhaled budesonide, compared with usual care, in adults within 7 days of the onset of mild COVID-19 symptoms. The trial was done in the community in Oxfordshire, UK. Participants were randomly assigned to inhaled budsonide or usual care stratified for age (≤40 years or >40 years), sex (male or female), and number of comorbidities (≤1 and ≥2). Randomisation was done using random sequence generation in block randomisation in a 1:1 ratio. Budesonide dry powder was delivered using a turbohaler at a dose of 400 µg per actuation. Participants were asked to take two inhalations twice a day until symptom resolution. The primary endpoint was COVID-19-related urgent care visit, including emergency department assessment or hospitalisation, analysed for both the per-protocol and intention-to-treat (ITT) populations. The secondary outcomes were self-reported clinical recovery (symptom resolution), viral symptoms measured using the Common Cold Questionnare (CCQ) and the InFLUenza Patient Reported Outcome Questionnaire (FLUPro), body temperature, blood oxygen saturations, and SARS-CoV-2 viral load. The trial was stopped early after independent statistical review concluded that study outcome would not change with further participant enrolment. This trial is registered with ClinicalTrials.gov, NCT04416399. FINDINGS: From July 16 to Dec 9, 2020, 167 participants were recruited and assessed for eligibility. 21 did not meet eligibility criteria and were excluded. 146 participants were randomly assigned-73 to usual care and 73 to budesonide. For the per-protocol population (n=139), the primary outcome occurred in ten (14%) of 70 participants in the usual care group and one (1%) of 69 participants in the budesonide group (difference in proportions 0·131, 95% CI 0·043 to 0·218; p=0·004). For the ITT population, the primary outcome occurred in 11 (15%) participants in the usual care group and two (3%) participants in the budesonide group (difference in proportions 0·123, 95% CI 0·033 to 0·213; p=0·009). The number needed to treat with inhaled budesonide to reduce COVID-19 deterioration was eight. Clinical recovery was 1 day shorter in the budesonide group compared with the usual care group (median 7 days [95% CI 6 to 9] in the budesonide group vs 8 days [7 to 11] in the usual care group; log-rank test p=0·007). The mean proportion of days with a fever in the first 14 days was lower in the budesonide group (2%, SD 6) than the usual care group (8%, SD 18; Wilcoxon test p=0·051) and the proportion of participants with at least 1 day of fever was lower in the budesonide group when compared with the usual care group. As-needed antipyretic medication was required for fewer proportion of days in the budesonide group compared with the usual care group (27% [IQR 0-50] vs 50% [15-71]; p=0·025) Fewer participants randomly assigned to budesonide had persistent symptoms at days 14 and 28 compared with participants receiving usual care (difference in proportions 0·204, 95% CI 0·075 to 0·334; p=0·003). The mean total score change in the CCQ and FLUPro over 14 days was significantly better in the budesonide group compared with the usual care group (CCQ mean difference -0·12, 95% CI -0·21 to -0·02 [p=0·016]; FLUPro mean difference -0·10, 95% CI -0·21 to -0·00 [p=0·044]). Blood oxygen saturations and SARS-CoV-2 load, measured by cycle threshold, were not different between the groups. Budesonide was safe, with only five (7%) participants reporting self-limiting adverse events. INTERPRETATION: Early administration of inhaled budesonide reduced the likelihood of needing urgent medical care and reduced time to recovery after early COVID-19. FUNDING: National Institute for Health Research Biomedical Research Centre and AstraZeneca.


Assuntos
Budesonida/administração & dosagem , Tratamento Farmacológico da COVID-19 , Glucocorticoides/administração & dosagem , Administração por Inalação , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
11.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875583

RESUMO

Understanding the motility behavior of bacteria in confining microenvironments, in which they search for available physical space and move in response to stimuli, is important for environmental, food industry, and biomedical applications. We studied the motility of five bacterial species with various sizes and flagellar architectures (Vibrio natriegens, Magnetococcus marinus, Pseudomonas putida, Vibrio fischeri, and Escherichia coli) in microfluidic environments presenting various levels of confinement and geometrical complexity, in the absence of external flow and concentration gradients. When the confinement is moderate, such as in quasi-open spaces with only one limiting wall, and in wide channels, the motility behavior of bacteria with complex flagellar architectures approximately follows the hydrodynamics-based predictions developed for simple monotrichous bacteria. Specifically, V. natriegens and V. fischeri moved parallel to the wall and P. putida and E. coli presented a stable movement parallel to the wall but with incidental wall escape events, while M. marinus exhibited frequent flipping between wall accumulator and wall escaper regimes. Conversely, in tighter confining environments, the motility is governed by the steric interactions between bacteria and the surrounding walls. In mesoscale regions, where the impacts of hydrodynamics and steric interactions overlap, these mechanisms can either push bacteria in the same directions in linear channels, leading to smooth bacterial movement, or they could be oppositional (e.g., in mesoscale-sized meandered channels), leading to chaotic movement and subsequent bacterial trapping. The study provides a methodological template for the design of microfluidic devices for single-cell genomic screening, bacterial entrapment for diagnostics, or biocomputation.


Assuntos
Fenômenos Fisiológicos Bacterianos/genética , Movimento/fisiologia , Alphaproteobacteria/fisiologia , Bactérias/crescimento & desenvolvimento , Biofilmes , Escherichia coli/fisiologia , Flagelos/fisiologia , Hidrodinâmica , Microfluídica/métodos , Modelos Biológicos , Pseudomonas putida/fisiologia , Vibrio/fisiologia
12.
PLoS One ; 16(3): e0248878, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33740023

RESUMO

Garlic is a well-known example of natural self-defence system consisting of an inactive substrate (alliin) and enzyme (alliinase) which, when combined, produce highly antimicrobial allicin. Increase of alliinase stability and its activity are of paramount importance in various applications relying on its use for in-situ synthesis of allicin or its analogues, e.g., pulmonary drug delivery, treatment of superficial injuries, or urease inhibitors in fertilizers. Here, we discuss the effect of temperature, pH, buffers, salts, and additives, i.e. antioxidants, chelating agents, reducing agents and cosolvents, on the stability and the activity of alliinase extracted from garlic. The effects of the storage temperature and relative humidity on the stability of lyophilized alliinase was demonstrated. A combination of the short half-life, high reactivity and non-specificity to particular proteins are reasons most bacteria cannot deal with allicin's mode of action and develop effective defence mechanism, which could be the key to sustainable drug design addressing serious problems with escalating emergence of multidrug-resistant (MDR) bacterial strains.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Fenômenos Químicos , Dissulfetos/metabolismo , Alho/enzimologia , Ácidos Sulfínicos/metabolismo , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/ultraestrutura , Biocatálise/efeitos dos fármacos , Soluções Tampão , Dissulfetos/química , Estabilidade Enzimática/efeitos dos fármacos , Liofilização , Concentração de Íons de Hidrogênio , Cinética , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Estereoisomerismo , Ácidos Sulfínicos/química , Temperatura , Fatores de Tempo
13.
J R Soc Interface ; 18(175): 20200950, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33593209

RESUMO

While the pathological mechanisms in COVID-19 illness are still poorly understood, it is increasingly clear that high levels of pro-inflammatory mediators play a major role in clinical deterioration in patients with severe disease. Current evidence points to a hyperinflammatory state as the driver of respiratory compromise in severe COVID-19 disease, with a clinical trajectory resembling acute respiratory distress syndrome, but how this 'runaway train' inflammatory response emerges and is maintained is not known. Here, we present the first mathematical model of lung hyperinflammation due to SARS-CoV-2 infection. This model is based on a network of purported mechanistic and physiological pathways linking together five distinct biochemical species involved in the inflammatory response. Simulations of our model give rise to distinct qualitative classes of COVID-19 patients: (i) individuals who naturally clear the virus, (ii) asymptomatic carriers and (iii-v) individuals who develop a case of mild, moderate, or severe illness. These findings, supported by a comprehensive sensitivity analysis, point to potential therapeutic interventions to prevent the emergence of hyperinflammation. Specifically, we suggest that early intervention with a locally acting anti-inflammatory agent (such as inhaled corticosteroids) may effectively blockade the pathological hyperinflammatory reaction as it emerges.


Assuntos
COVID-19/imunologia , COVID-19/fisiopatologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Inflamação/imunologia , Pulmão/fisiopatologia , Corticosteroides , Citocinas/imunologia , Epitélio/imunologia , Humanos , Pulmão/patologia , Modelos Imunológicos , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/fisiopatologia , SARS-CoV-2/patogenicidade
14.
Biomed Opt Express ; 11(9): 4942-4959, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33014592

RESUMO

We present for the first time a lens-free, oblique illumination imaging platform for on-sensor dark- field microscopy and shadow-based 3D object measurements. It consists of an LED point source that illuminates a 5-megapixel, 1.4 µm pixel size, back-illuminated CMOS sensor at angles between 0° and 90°. Analytes (polystyrene beads, microorganisms, and cells) were placed and imaged directly onto the sensor. The spatial resolution of this imaging system is limited by the pixel size (∼1.4 µm) over the whole area of the sensor (3.6×2.73 mm). We demonstrated two imaging modalities: (i) shadow imaging for estimation of 3D object dimensions (on polystyrene beads and microorganisms) when the illumination angle is between 0° and 85°, and (ii) dark-field imaging, at >85° illumination angles. In dark-field mode, a 3-4 times drop in background intensity and contrast reversal similar to traditional dark-field imaging was observed, due to larger reflection intensities at those angles. With this modality, we were able to detect and analyze morphological features of bacteria and single-celled algae clusters.

16.
J Oncol ; 2019: 2403483, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31814825

RESUMO

Quantitative modelling is increasingly important in cancer research, helping to integrate myriad diverse experimental data into coherent pictures of the disease and able to discriminate between competing hypotheses or suggest specific experimental lines of enquiry and new approaches to therapy. Here, we review a diverse set of mathematical models of cancer cell plasticity (a process in which, through genetic and epigenetic changes, cancer cells survive in hostile environments and migrate to more favourable environments, respectively), tumour growth, and invasion. Quantitative models can help to elucidate the complex biological mechanisms of cancer cell plasticity. In this review, we discuss models of plasticity, tumour progression, and metastasis under three broadly conceived mathematical modelling techniques: discrete, continuum, and hybrid, each with advantages and disadvantages. An emerging theme from the predictions of many of these models is that cell escape from the tumour microenvironment (TME) is encouraged by a combination of physiological stress locally (e.g., hypoxia), external stresses (e.g., the presence of immune cells), and interactions with the extracellular matrix. We also discuss the value of mathematical modelling for understanding cancer more generally.

17.
Biomed Opt Express ; 10(9): 4369-4380, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31565495

RESUMO

Phase contrast imaging is widely employed in the physical, biological, and medical sciences. However, typical implementations involve complex imaging systems that amount to in-line interferometers. We adapt differential phase contrast (DPC) to a dual-phone illumination-imaging system to obtain phase contrast images on a portable mobile phone platform. In this dual phone differential phase contrast (dpDPC) microscope, semicircles are projected sequentially on the display of one phone, and images are captured using a low-cost, short focal length lens attached to the second phone. By numerically combining images obtained using these semicircle patterns, high quality DPC images with ≈ 2 micrometer resolution can be easily acquired with no specialized hardware, circuitry, or instrument control programs.

19.
Proc Natl Acad Sci U S A ; 116(27): 13543-13552, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31213536

RESUMO

Filamentous fungi that colonize microenvironments, such as animal or plant tissue or soil, must find optimal paths through their habitat, but the biological basis for negotiating growth in constrained environments is unknown. We used time-lapse live-cell imaging of Neurospora crassa in microfluidic environments to show how constraining geometries determine the intracellular processes responsible for fungal growth. We found that, if a hypha made contact with obstacles at acute angles, the Spitzenkörper (an assembly of vesicles) moved from the center of the apical dome closer to the obstacle, thus functioning as an internal gyroscope, which preserved the information regarding the initial growth direction. Additionally, the off-axis trajectory of the Spitzenkörper was tracked by microtubules exhibiting "cutting corner" patterns. By contrast, if a hypha made contact with an obstacle at near-orthogonal incidence, the directional memory was lost, due to the temporary collapse of the Spitzenkörper-microtubule system, followed by the formation of two "daughter" hyphae growing in opposite directions along the contour of the obstacle. Finally, a hypha passing a lateral opening in constraining channels continued to grow unperturbed, but a daughter hypha gradually branched into the opening and formed its own Spitzenkörper-microtubule system. These observations suggest that the Spitzenkörper-microtubule system is responsible for efficient space partitioning in microenvironments, but, in its absence during constraint-induced apical splitting and lateral branching, the directional memory is lost, and growth is driven solely by the isotropic turgor pressure. These results further our understanding of fungal growth in microenvironments relevant to environmental, industrial, and medical applications.


Assuntos
Hifas/crescimento & desenvolvimento , Neurospora crassa/crescimento & desenvolvimento , Meio Ambiente , Hifas/fisiologia , Microtúbulos/fisiologia , Neurospora crassa/fisiologia , Imagem Óptica , Imagem com Lapso de Tempo
20.
Phys Rev E ; 99(1-1): 012408, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30780339

RESUMO

Bacterial movement in confined spaces is routinely encountered either in a natural environment or in artificial structures. Consequently, the ability to understand and predict the behavior of motile bacterial cells in confined geometries is essential to many applications, spanning from the more classical, such as the management complex microbial networks involved in diseases, biomanufacturing, mining, and environment, to the more recent, such as single cell DNA sequencing and computation with biological agents. Fortunately, the development of this understanding can be helped by the decades-long advances in semiconductor microfabrication, which allow the design and the construction of complex confining structures used as test beds for the study of bacterial motility. To this end, here we use microfabricated channels with varying sizes to study the interaction of Escherichia coli with solid confining spaces. It is shown that an optimal channel size exists for which the hydrostatic potential allows the most efficient movement of the cells. The improved understanding of how bacteria move will result in the ability to design better microfluidic structures based on their interaction with bacterial movement.


Assuntos
Escherichia coli/citologia , Flagelos/metabolismo , Microfluídica , Modelos Biológicos , Fenômenos Biomecânicos , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...